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Abstract. Anomaly detection for cyber-physical systems is an effec-
tive method to detect ongoing process anomalies caused by an attacker.
Recently, a number of anomaly detection techniques were proposed (e.g.,
ML based, invariant rule based, control theoretical). Little is known
about the resilience of those anomaly detectors against attackers that
conceal their attacks to evade detection. In particular, their resilience
against white-box concealment attacks has so far only been investigated
for the subset of neural network-based detectors. In this work, we demon-
strate for the first time that white-box concealment attacks can also be
applied to detectors that are not based on neural network solutions. In
order to achieve this, we propose a generic white-box attack that evades
anomaly detectors and can be adapted even if the target detection tech-
nique does not optimize a loss function. We design and implement a
framework to perform our attacks, and test it on several detectors from
related work. Our results show that it is possible to completely evade
a wide range of detectors (based on diverse detection techniques) while
reducing the number of samples that need to be manipulated (compared
to prior black-box concealment attacks).

1 Introduction

Cyber-Physical Systems (CPS) interact with the physical environment to accom-
plish a task by using sensors and actuators while applying a control strategy.
Examples of such systems are Industrial Control Systems (ICS), Critical Infras-
tructures (such as power and water systems), and Autonomous Vehicles (AV).

The security and reliability of those systems are crucial in our society. For
example, the water reaches houses through water treatment and distribution
systems, which are critical infrastructures, consisting of pipes, pump stations,
industrial controllers, etc. Attacks targeting those infrastructures can cause dis-
ruption (e.g., no water to houses), or harm people (e.g., contaminants in water).

Recently, anomaly detection techniques for CPS gained popularity as they
allow the identification of process anomalies caused by cyber-attacks while
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remaining legacy compliant. Different techniques were proposed in the litera-
ture to detect anomalies in CPS, system identification [3,9,19,29], Kalman fil-
tering [2], Support Vector Machines [8], Deep learning [16,22,28] and control
invariants [1,13]. Little is known about the resilience of those anomaly detec-
tion techniques against targeted manipulation, especially regarding classifier eva-
sion [4]. If an attacker evades the anomaly detection system to conceal the true
state and avoid or delay detection, can cause severe hardware damage or harm
human beings. Concealment attacks are a variant of evasion attacks, in which
evasion by sensor manipulation will not have a direct effect on the process [11],
and can be performed in white-box and black-box settings. We refer to white-
box and black-box to differentiate the knowledge of the attacker. A white-box
attacker has access to a copy of the anomaly detector, which can be queried
to get detection scores for a sample. A black-box attacker can not access this
information.

Prior work demonstrated that generic black-box concealment attacks on gen-
eral anomaly detectors are possible [12], but those limitations lead to attacks
that manipulate a large number of sensors, over many samples. It is unclear how
optimal those attacks are—we need a baseline to compare against. White-box
concealment attacks by a less constrained, more knowledgeable attacker could
provide such a baseline, but those attacks were only investigated for the specific
subclass of Deep Learning based anomaly detectors [11]. Thus, the threat posed
by white-box concealment attacks on general anomaly detectors is unclear, and
in particular, the minimal perturbation required to achieve misclassification (by
strong attackers) is unknown for each detector.

In this work, we bridge this research gap by addressing three research ques-
tions: R1 How resilient are anomaly detectors for cyber-physical systems against
white-box concealment attacks? R2 Can white-box attacks efficiently compute
manipulations at runtime? R3 How do the white-box attacks perform compared
to prior work black-box attacks?

To address the aforementioned research questions we tackle two research chal-
lenges: C1 The attacker manipulates dynamic streaming data, i.e., the attacker
cannot retroactively change past values, or predict future process sensor values.
C2 General detectors are not guaranteed to optimize a differentiable loss func-
tion for detection (in contrast to Deep Learning-based detectors). We address C1
by implementing and evaluating a method that manipulates only the current sen-
sors’ observations and show that it is still possible to minimize the detection func-
tion loss. We address C2 by proposing a method to re-write non-differentiable
classification functions as differentiable and hence allow concealment attacks.

List of Contributions. The main contributions of the paper are:

– Designing an effective general purpose white-box concealment framework for
anomaly detection systems.

– Formulation of loss-free detectors (i.e. process invariants), as loss-based.
– Evaluation of proposed white-box attacks with real testbed data against five

state-of-the-art anomaly detection systems.
– Comparison of the proposed white-box concealment with prior attacks.
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Table 1. Summary of anomaly detection families proposed in prior work in the context
of CPS. The table reports the approach used for detection and the detectors that we
analyze in our evaluation (� = no, � = yes). We skip DNN as it was analyzed before.

[19] [3] [9,29] [2,8] [16,22,28] [1,13]

Approach type AR SVD LTI SVM DNN Invariants

Classification Differentiability D D D D D N

Prior WBC analysis � � � � � �
Analyzed in this work � � � � � �

2 CPS: Background and Related Work

CPS Architecture. Cyber-physical systems encompass a wide spectrum of
applications [23]. The general CPS architecture consists of three main compo-
nents. Sensors: measure the physical environment; controllers: use the infor-
mation received from sensors and decide which actions to take; and actuators:
execute those commands.

CPS Security. Given the high degree of interconnections in a CPS, the overall
security of CPS deployments relies on trustworthy communication. In practice,
CPS systems are often deployed relying on protocols that do not implement secu-
rity features (such as authentication or encryption) e.g., Fieldbus [14], CAN [14],
or mavlink [21]. Communication protocols that promise security were introduced
for ICS, but in practice, there are challenges in deploying secure CPS [10].

Attacks to CPS. CPS are important for our society and they are a valuable
target of attacks [6]. Attacks on CPS occurred in the past. For example, attacks
to ICS and critical infrastructures e.g., Stuxnet [31] targeting nuclear plants, the
Colonial Pipeline attack [32] targeting gasoline pipeline and Oldsmar’s water
treatment attack [7] targeting a water facility. The common goal of attacks is to
physically or remotely exploit the CPS to cause process disruption.

Anomaly Detection for CPS. A number of process-based anomaly detec-
tion techniques were proposed in the literature. They leverage the characteris-
tics of the physical process to detect deviations in the process data caused by
attacks [6]. i) Residual-based approaches are trained to minimize a loss func-
tion (usually Mean Squared Error), between the expected and observed sensor
readings. To detect anomalies, the loss between input and output is monitored,
if it exceeds a threshold an alarm is raised. In this category, we find control
theoretic approaches e.g., Auto Regressive (AR) models [19] and Linear Time-
Invariant (LTI) models [9,29], and machine learning approaches e.g., Support
Vector Machines [2,8] and Deep Neural Networks [16,22,28]. ii) Invariant-based
approaches consist of rules that describe conditions that always hold in a given
state on the CPS [1]. Those rules are often written based on detailed process
knowledge [1,13].
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Fig. 1. System and attacker model, we assume a physical process that is controlled
by a controller and monitored by an anomaly detection system. The attacker wants to
hide an ongoing anomaly on the CPS. The attacker is aware that anomaly detection is
deployed and wishes to conceal the true state and evade detection.

Evasion Attacks Against CPS. In Adversarial Machine Learning, evasion
attack refers to the setting in which an attacker modifies a sample to induce mis-
classification in a classifier [4]. In the context of the Advanced Driver-Assistance
System (ADAS), several attacks were proposed e.g., against LIDAR [5], location
estimation [27]. In the context of CPS anomaly detection, white-box attacks
against Deep Learning models [11,33] were demonstrated. Also, generic black-
box evasion techniques were proposed [12]. Table 1 summarizes prior work in
the field of anomaly detection for CPS, and reports which models were analyzed
before for white-box concealment attacks. In this work, we focus on models pro-
posed in prior work but not analyzed so far against white-box concealment.

3 System and Attacker Model

We assume a Cyber-Physical System that is monitored by an anomaly detec-
tion system to detect anomalies (Fig. 1). The physical process is controlled by
one or multiple controllers, control commands u and sensor readings y are
observed by the anomaly detector and used for the detection. Consistent with
related work [11], we assume an attacker that has physical access to the CPS
e.g., the attacker can attach malicious hardware to the network, and perform
sensor spoofing exploiting communication protocol vulnerabilities (e.g., unau-
thenticated industrial protocols [14]) or performing attacks such as Man-in-the-
PLC [15] attack. The attacker has knowledge of the system and can query the
anomaly detector to obtain the predictions/classifications w.r.t. the current y
and u. The attacker’s goal is to launch a concealment attack to hide an ongoing
process anomaly in the system (i.e., conceal the anomalies caused by the attacker
on the process from the anomaly detection system).

The attacker can modify exchanged industrial traffic in transit, or compro-
mise intermediate hosts to change values being forwarded (yadv and uadv), in
Fig. 1. For example, in the Stuxnet attack [31] a compromised PLC was chang-
ing the rotation frequency of centrifuges of a nuclear process while reporting
the correct frequency value to the anomaly detection to hide the anomaly. We
measure the cost of the attack with respect to the number of features that are
manipulated using the L0 norm (independent of the modification amount, i.e. L2
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norm), as the effort is in compromising the communication channel, and at that
point, arbitrary values can be set [11]. In practice, we allow any perturbations
within the operational limits of the respective sensor or actuator [26].

3.1 Research Goals and Challenges

We address the three open research questions presented in the introduction.
While addressing the three research questions we tackle the following research
challenges: C1 The attacker manipulates dynamic streaming data on the fly,
which means that the attacker i) iteratively manipulates each value sequentially
without knowing future values in advance; ii) adapts the strategy according to
previous values stored in data logs without altering them. This is imposed by
the Cyber-Physical Systems, where the attacker is assumed to perform sensor
spoofing exploiting communication channels vulnerabilities. C2 Not all general
detectors are guaranteed to have differentiable loss functions (in contrast to Deep
Learning based detectors). Thus, we need a general technique to attack different
detectors even in absence of a loss function. For example, the detector [13] repre-
sents the current sample as a boolean vector (each element representing whether
a specific invariant was violated). For this reason, we cannot use gradient-based
methods (for example) to find optimal evasion samples.

Our main goal is to assess whether additional knowledge on detection mecha-
nisms (i.e. white-box attacks) allows the attacker to perform better compared to
black/grey-box attacks discussed in prior work [11,12]. This allows us to assess
the robustness of CPS anomaly detectors, i.e., the minimal number of commu-
nication channels (features) that need to be controlled by the attacker to avoid
detection.

3.2 Formal Definition of Concealment Attack

We now summarize the formal definition of the attack based on prior work [11].
Sensor and actuator values from a CPS are logged and used for anomaly detec-
tion. Given an anomalous feature vector x = (y, u) (i.e., sensors and actuators
readings) collected at a certain instant in time, a binary classification function
f(x) that classifies system state as ‘anomalous’ or ‘safe’, the concealment attack
looks for a feature perturbation δ that added to x produces target misclassifica-
tion (Eq. 1).

Given x = (y, u)
s.t. f(x) = ‘anomalous’

Find xadv = x + δ

s.t. f(xadv) = ‘safe’
(1)

where y ∈ R
n, u ∈ R

m, x ∈ R
n+m, xadv = (yadv, uadv), yadv = y + δy, δy ∈ R

n,
uadv = u + δu, and δu ∈ R

m.
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Fig. 2. Challenge C1. For each time slot, the attacker can only manipulate the latest
sensor reading without knowing future values. We note the attacker cannot retroac-
tively modify previous (manipulated or original) values. Eventually, the data considered
in the sliding window will exclusively process values that were manipulated before.

4 Proposed Approach

We design a generic white-box concealment attack for CPS anomaly detectors.
In this section, we start proposing the general framework that can be applied to
attack prior work anomaly detectors.

4.1 White-Box Concealment Attacks (WBC)

We translate the white-box concealment attack (WBC) objective (Eq. 1) into an
error minimization problem (Eq. 2)

minimize Lossxadv
(xadv, tc)

where tc = target class
(2)

Then, we induce targeted misclassification (to achieve the goal in Eq. 1)
inspired by the Fast Gradient Signal Method (FGSM) [18] proposed originally
for the domain of image manipulation.

δ = −ε ∗ sign(∇xLoss(x, tc)) (3)

Every anomaly detection method has a different classification function, and
consequently a different loss (if explicitly present), for this reason, this generic
method is suitable to be applied to different categories of anomaly detectors.

The perturbation in Eq. 3 is iteratively applied until the concealment attack
is successful and the detector no longer flags the anomaly (Eq. 1). Two attackers
can be considered in this setting (we will compare them in Sect. 6). The first
continue iterating until the objective (Eq. 2) is minimized, and the second con-
tinues until the classification label is changed, but the objective is not necessarily
minimized.

4.2 Attacking Detectors with Differentiable Classifiers

We now address the research challenge C1: on-the-fly manipulation of stream-
ing data (see Fig. 2). Residual-based anomaly detectors classify anomalies based
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Fig. 3. Challenge C2. WBC concealment against detectors without loss function.
Invariant-based detection works by checking whether the sensor readings satisfy the
invariant rules, without relying on predictive models (no loss function). To apply our
WBC attack, we re-formulate invariant-based methods as loss-based. We manipulate
the sensors and actuators readings according to the difference (loss) between the desired
state specified by the rules and the current state.

on the residual error between the sensors and actuators readings x and a pre-
dicted output value o from the anomaly detection classifier. That classification
is performed over a sliding window of past observed values (i.e., [xt−n, . . . , xt]).

In our scenario, the attacker can not simultaneously manipulate each value
in this sliding window (as it would require post-hoc change of data), only the
current sensor reading xt can be manipulated. This introduces a novel constraint
on the attack as the attacker has to minimize the residual loss acting on the last
observed sample, and cannot globally minimize the loss function. We account
for this additional constraint in our evaluation.

For example, to perform the WBC attack for residual-based detectors, we
model the residuals by using the Mean Squared Error loss (Eq. 4). Then, we
compute the partial derivative of the mean squared error w.r.t. x (Eq. 5) and
apply directly FGSM to it (Eq. 3).

Loss(x, o) =
1
2
(x − o)2 (4) ∇xLoss(x, o) = x − o (5)

4.3 Attacking Detectors with Non-differentiable Classifiers

Invariant-based anomaly detectors [1,13] classify anomalies based on the coher-
ence of the system sensors and actuators w.r.t. a set of process invariant rules.
When invariants are used, detectors check if some invariant rules are not fulfilled
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and raise an alarm consequently.

Given an invariant rule R: A → B

(read as: if A then B)
(6)

where A is the antecedent and B is the consequent of the invariant rule.
Antecedent and consequent of a rule, consist of a set of predicates over cer-
tain sensors and actuators (e.g., valve status = 1 and sensor value < 4). An
anomaly is identified if predicates in the antecedent A are all satisfied but not
all predicates in consequent B are satisfied.

This method does not employ a loss function. In order to evade such detec-
tors we need to consider the research challenge C2, i.e., we need to formulate
the invariant-based approach as a loss-based method. Specifically, to evade the
detector an attacker is required to modify the sensor readings in such a way that
the predicates in B are fulfilled1. In order to do so, we decompose the attack in
two steps (Fig. 3 provides a toy example of the method).

(i) Erroneous Predicates Identification. In the first step we identify which
predicates trigger the anomaly in B. To do so we perform the set difference
between the predicates in the rule R and the predicates observed in the system
P (Eq. 7).

R \ P (7)

Practically predicates are represented by Boolean conditions (i.e., boolean
vectors where the position represents a certain invariant and the value 1 or 0
represents if the invariant condition holds). We identify the predicate that does
not match the triggered rule performing the difference of such vectors.

(ii) Perturbation of Sensors Generating Errors in Predicates. In the
second step, for the predicates that are erroneous we need to perturb the data
related to that predicate to induce the change in the generated predicates. To
guide sensor reading perturbation we can consider the desired value (i.e., the
condition required by the predicate) of the erroneous predicates as our target
value. This step can be performed by substituting the desired value directly
in the sensor reading if the predicate is a direct equality or inequality over
the sensor value (e.g., sensor = 3). Otherwise, if the predicate aggregates more
information about a sensor reading (e.g., Gaussian Mixture Models over sensor
value updates), we formulate the problem as a Mean Squared Error minimization
as in Sect. 4.2, and compute the perturbation using Eq. 3 and using the loss as
in Eq. 4.

5 Implementation and Evaluation Setup

In this section, we provide details about the implementation setup, the target
anomaly detection systems, and the dataset used for evaluation. Based on the
1 Alternatively the attacker can deactivate a rule by violating one condition in A,

but this does not give guarantees about other rules that might be triggered by the
modification.
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categories of detectors identified in Sect. 2 and the analysis of prior work white-
box concealment attacks in Table 1 we selected the target detectors according
to three main criteria: (i) diversity of the detection technique (ii) not covered
by prior work studies on white-box concealment attacks (iii) code availability
for the detector. Our selection covers the research gap in the field of white-
box concealment attacks on CPS anomaly detection. We consider five differ-
ent anomaly detectors proposed in relevant prior peer-reviewed publications;
namely, Auto Regressive model [19], Linear Time Invariants [29], Support Vec-
tor Machines [3,8], Process Invariants [13], and for each, we apply our proposed
approach to achieve misclassification.

5.1 Attack Implementation and Hardware Setup

All experiments were performed on a laptop, equipped with Intel(R) Core(TM)
i7-8650U CPU @ 1.90GHz, and 16GB of RAM. Experiments were performed
either using Matlab 2019a, or Python 3.8.10 (depending on detector sources).

Implementation of the attack required: 201 lines of Matlab code for the AR
model [19], 249 lines of Matlab code for the LTI model [29], 287 lines of Python
code for the SVM [8] in this case we relied on the secml [25] library for gra-
dients calculation by creating a wrapper for sklearn OneClassSVM, 324 lines
of code for the PASAD detector [3], and 490 lines of code for the SFIG detec-
tor [13]. The code of our attacks is available at https://github.com/scy-phy/
whiteboxDimva23.

5.2 Auto Regressive Models

AR models are a popular method used to model time series processes using
linear equations starting from process data. Specifically, an Auto Regressive
model (Eq. 8), tries to minimize the prediction error of sample Xt given the
previous values (X0 . . .Xt−1).

Xt = c +
p∑

i=1

γiXt−i + εt (8)

where c is a constant, γi, . . . , γp indicates the parameters of the model and
εt is white noise. The parameters of the model are fitted using Yule-Walker
equations [20]. AR models were applied to perform anomaly detection in cyber-
physical systems [19,29]. The AR model is fitted starting from normal opera-
tions data, consequently, residuals observed during training are used to identify
some thresholds or to tune Cumulative Sum (CUSUM) statistics. At test time
the residuals are monitored to detect some deviations from expected behav-
ior. Availability. We relied on the re-implementation by Erba et al. [12] and
adapted it to work with SWaT dataset.

https://github.com/scy-phy/whiteboxDimva23
https://github.com/scy-phy/whiteboxDimva23
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5.3 Linear Time Invariant Models

Linear Time Invariant (see Eq. 9) models were applied [9,29].
{

sk+1 = Ask + Bqk

xk = Csk + Dqk
(9)

where k := kT and T is the sampling time. sk ∈ R
n is the state of the system,

i.e., the variables (directly or indirectly observable) of the process. qk ∈ R
p is

the input to the system. xk ∈ R
q is the output of the system. A ∈ R

n×n is the
state matrix, relates the state sk and its update sk+1. B ∈ R

n×p is the input
matrix, relates the system input qk and the state update sk+1. C ∈ R

q×n is the
output matrix, relates the state sk and the measured output xk. D ∈ R

q×p is
the feed-through matrix, relates qk and xk.

Similarly to the AR model system identification (n4sid algorithm [30]) is
applied to identify the LTI model parameters. Then the CUSUM algorithm
performs anomaly detection. We identified an order 4 LTI model for the SWaT
dataset. We use 22 sensors as input of the system, and the 3 tank level sensors
as the output of the model. Availability. We relied on the re-implementation
by Erba et al. [12] and we adapted it to work with the SWaT dataset.

5.4 SVM

We implement the SVM model proposed by Chen et al. [8], the proposed SVM
is trained on the water tank sensor readings (π,π′) measured at d timesteps from
each other. To apply their proposed method to the SWaT dataset which contains
exclusively benign samples in the training set, we switched to one class SVM
classifier. Following the guideline in the paper we performed a grid search to tune
the parameters of the SVM. The resulting model is OneClassSVM with linear
kernel, γ=0.01, ν=0.02. We also tuned the parameter d. With our experiments,
we tested d = 1, 10, 100, and 1000 s and found the best performance at 1 s.
We note that the simulator used in the original paper has a faster sampling
rate (5 ms) than the actual SWaT testbed sampling rate (1 s). Availability.
This detector was made available to us by the authors of [8] upon request. We
adapted it to work with the SWaT testbed dataset (originally it was proposed
for the SWaT simulator).

5.5 PASAD

The PASAD model proposed in the work by Aoudi et al. [3] is based on the idea
of Singular Value Decomposition (SVD) [17]. PASAD uses the time series data
and applies a sliding window to them. Using the sliding window data samples,
PASAD identifies a projection subspace where normal operations (i.e., the train-
ing data) sensor readings are projected to. Normal operations form a cluster in
the projection subspace. At test time, if anomalous sensor readings occur on the
system, the data points will be projected far away from the cluster obtained



White-Box Concealment Attacks Against Anomaly Detectors for CPS 121

during training. The distance from the center of the cluster is used as a criterion
to detect anomalies. Availability. This detector is available online on GitHub2.

5.6 SFIG

The Systematic Framework for Invariant Generation (SFIG) method proposed
by Feng et al. [13], based on the idea of process invariants (see Sect. 2), proposes
a method to automatically find invariant rules starting from process data. The
rules are generated based on three sets of predicates: distribution driven pred-
icates, event driven predicates, and categorical predicates. Distribution driven
predicates are generated fitting a Gaussian mixture model of the system, while
categorical predicates are generated according to actuator states. Finally, event
driven predicates are generated by fitting some linear models to capture critical
values that trigger changes in actuator states. To perform anomaly detection, at
each time step, sensor readings are tested against all the rules in the collection
of identified rules. If a rule is not fulfilled an alarm is raised. Availability. This
detector is available online on GitHub3.

5.7 SWaT Dataset

SWaT [24] is a water treatment testbed located at the Singapore University of
Technology and Design. It consists of a six-stage process for water treatment.
Those six stages are controlled by interconnected PLCs, connected to Human
Machine Interfaces (HMIs), Supervisory Control and Data Acquisition (SCADA)
workstation, and a Historian. The SWaT dataset is a collection of data from 11
days of operations; 7 days were collected during the system in normal operation
while 4 days were collected while 41 attacks were launched on the system. We
rely on this dataset as it is commonly used in related research, notably, it was
used to evaluate all the detectors from prior work that we test in this work
against WBC.

6 Evaluation Results

In this section, we present the results of our evaluation. To answer to R1, we
applied the five aforementioned detection mechanisms to the SWaT dataset [24]
and attacked them with the proposed WBC. To answer R2, we verify the com-
putational runtime of the proposed approach and the cost of the perturbations.
Finally, to answer to R3, the results of the WBC attack methodology are com-
pared against the performance when no concealment was applied to the data,
and against the black-box attacks for CPS detectors [12].

For our proposed WBC attack we consider three variants. Namely, WBC
baseline, where the WBC attack is applied to every set of sensor readings labeled

2 https://github.com/mikeliturbe/pasad.
3 https://github.com/cfeng783/NDSS19 InvariantRuleAD.

https://github.com/mikeliturbe/pasad
https://github.com/cfeng783/NDSS19_InvariantRuleAD
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Table 2. WBC Attack on the AR model trained over SWaT sensor LIT301 (used as
reference in prior work [3]). The WBC attacks evade the anomaly detection system (see
original recall vs. WBC recall). μ indicates the mean, and σ the standard deviation. N
indicates how many rows were modified by the attack †Note: technically NaN as the
metric divides by 0.

Elapsed (ms) Euclidean D.

Data Acc F1 Prec Rec FPR μ σ μ σ N

Original 0.797 0.254 0.227 0.288 0.134 – – – – –

Prior Work [12]

Replay 0.775 0.088 0.086 0.091 0.131 – – 13.592 48.322 541

Random R. 0.832 0.501 0.389 0.702 0.151 – – 12.832 45.903 541

Stale 0.788 0.186 0.173 0.201 0.131 – – 17.341 55.804 522

Our WBC

baseline 0.858 (0)† 0.000 0.000 0.024 0.004 0.014 11.046 40.578 515

NTP 0.860 (0)† 0.000 0.000 0.022 249.36 148.77 2.081 24.563 74

NA 0.879 (0)† 0.000 0.000 0.001 171.11 71.7 5.092 30.485 258

as ‘anomalous’ as ground truth (i.e., the attacker is manipulating the physical
process), regardless if they are detected as anomalous or not. In this setting,
the attacker iterates until the objective (Eq. 2) is minimized. This is the same
setting considered by the attacks proposed by Erba et al. [12], and we use it for
comparison. No True Positives (WBC NTP), in this setting the WBC is applied
to every set of sensor readings labeled as ‘anomalous’, which is also detected
as anomalous by the anomaly detection system (i.e., physical anomaly correctly
detected by the anomaly detection system). Finally, we consider the No Alarms
(WBC NA), in this setting the WBC is applied to every set of sensor readings
that are detected as anomalous by the anomaly detection system (i.e., conceal
also false positives). In WBC NTP and WBC NA settings, the attacker iterates
until the label is changed.

We note that since there is the white-box assumption on the target detector,
the attacker is assumed to access the prediction of the detector. Moreover, since
the physical process manipulations are under the control of the attacker, the
attacker knows when the physical process anomaly is occurring on the system
(i.e., ‘anomalous’ ground truth in the SWaT dataset).

Evaluation Metrics. To assess the impact of the attack on the detection capa-
bility of the classifier we consider the following metrics: Accuracy, F1 score,
Precision, Recall, and False Positive Rate. In particular, the Recall score gives
us information on how the attack is capable of concealing the true state of
the system from the anomaly detector. Elapsed time is measured to assess the
mean computational overhead required by the WBC attack. Specifically, we mea-
sure average the time required to compute an adversarial example. Finally, we
measure the Euclidean distance (L2) between the original sample p and the
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Fig. 4. Comparison of AR detection before and after the WBC attack. The concealment
attack hides the anomalies in the process data. In the bottom figure (WBC NA) WBC
is applied to all the readings even if no physical attack is present, this removes not only
the True Positives but also the False Positives.

perturbed sample q to assess the perturbation required on the features by the
attack. Moreover, to evaluate the minimal number of features under the con-
trol of the attacker we compute the Hamming distance (L0), as the number of
sensors/actuators that were changed by the attack.

6.1 Auto Regressive

We apply the proposed approach to the AR detection model. In Table 2 we
present the results of the WBC attack and compare them with the result from
prior work black-box attacks [12], while Fig. 4 shows the impact of the WBC
over the CUSUM statistics.

The AR detector precision and recall drop to 0 after the attack, this means
that no more true positives are detected, and consequently, the F1 score becomes
not defined as we have a division by zero. This result means that the detector is
no longer capable of recognizing anomalies in the system. Looking at Fig. 4 we
can also observe the difference between the three attack approaches (baseline,
NTP, NA). WBC baseline brings the CUSUM error to 0 when the ground truth
label reports ‘anomalous’, this happens because the attacker iterates until the
loss is minimized. This is in contrast to WBC NTP and WBC NA for which the
attacker stops iterating as soon as the alarm threshold is not surpassed anymore.
Finally, we can notice the difference between the WBC NTP and WBC NA, the
WBC NTP (as the name suggests) brings the True Positives to zero, while the
WBC NA hides all the positives (both True Positive and False Positive).

Regarding the computational time, we observe that the WBC concealment
attacks required hundreds of milliseconds to compute (while SWaT sampling
time is 1 s). WBC baseline is sensibly faster because code optimization was
used. As in the WBC baseline, we care of loss minimization, and we attack
the AR model, we can achieve loss minimization in one step by selecting



124 A. Erba and N. O. Tippenhauer

Table 3. WBC Attack on the LTI model trained over SWaT.

Elapsed (ms) Euclidean D. Ham. D.

Data Acc F1 Prec Rec FPR μ σ μ σ N μ σ

Original 0.962 0.815 0.987 0.694 0.001 – – – – – – –

Prior Work [12]

Replay 0.879 0.008 0.233 0.004 0.002 – – 69.60 210.7 53863 21.4 1.8

Random R 0.998 0.992 0.987 0.996 0.002 – – 69.58 210.53 53863 21.4 1.8

Stale 0.887 0.126 0.845 0.068 0.002 – – 66.05 211.53 53862 19.8 4.1

Our WBC

baseline 0.884 0.081 0.785 0.043 0.002 121.0 326.1 67.25 218.92 53863 2.9 0.3

NTP 0.885 0.087 0.831 0.046 0.001 32.9 22.9 59.41 208.37 37385 2.9 0.5

NA 0.885 0.087 0.944 0.046 0.000 87.8 46.4 59.89 208.95 37881 2.9 0.5

ε = ||∇xLoss(x, o)||2 in Eq. 3. For clarity, this is equivalent to changing Eq. 3 to
δ = −∇xLoss(x, o).

We compare the white-box concealment technique w.r.t. the black-box
attacks proposed by Erba et al. [12] (See Table 2). As we can observe the white-
box attacks outperform the black-box attacks in terms of concealment capability,
as the black-box attacks never conceal all the True Positives (i.e. recall greater
than 0). Finally, we can compare the Euclidean distances between the attacks.
As we can observe in Table 2, the average perturbation is always lower for the
WBC attacks w.r.t. prior work black-box attacks. This is because the white-box
setting optimizes the samples to be optimal w.r.t. the past observed process
data. This is instead impossible for black-box attacks. This can be observed by
looking at the number of modified values (N) in Table 2, which is always in favor
of the WBC NTP ad NA attacks. Since the AR model is univariate, we do not
report the hamming distance (it would be 1 in any case).

6.2 Linear Time Invariant

We apply the WBC concealment attacks to the LTI model. Table 3 reports the
results of our evaluation. The WBC concealment attacks evade the LTI detector,
and the detector recall drops from 0.69 to 0. We can observe the impact of the
NA attack that reduces also the number of False Positive Rate.

The required computational time of the WBC attacks is at most 120 ms,
which is lower than the sampling time of the SWaT system (1 s).

Also in this case the Euclidean Distance of the perturbed samples is lower
than in prior work attacks. Moreover, when looking at the Hamming Distance,
we can observe how the number of features to be manipulated decreases (2.93 vs
28.4). This happens because our WBC is constrained to manipulate the output
of the model xk but cannot operate on the input qk (see Eq. 9). This number tells
us that an attacker which controls 3 out of the 25 features used by the model,
can significantly reduce the classifier recall by reducing it from 0.694 to 0.046.
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Table 4. WBC Attack on the SVM model trained over SWaT sensor LIT101, LIT301,
LIT 401.

Elapsed (ms) Euclidean D. Ham. D.

Data Acc F1 Prec Rec FPR μ σ μ σ N μ σ

Original 0.931 0.689 0.754 0.634 0.028 – – – – – – –

Prior Work [12]

Replay 0.855 0.0 0.0 0.0 0.028 – – 87.13 266.40 53897 5.99 0.12

Random R 0.855 0.0 0.0 0.0 0.028 – – 87.45 266.03 53897 5.99 0.12

Stale 0.855 0.0 0.0 0.0 0.028 – – 84.52 269.66 53896 5.84 0.55

Our WBC

baseline 0.855 0.0 0.0 0.0 0.028 65.56 56.25 7.54 27.33 53934 5.99 0.07

NTP 0.855 0.0 0.0 0.0 0.028 103.84 33.13 7.54 27.33 34187 5.99 0.07

NA 0.880 0.0 0.0 0.0 0.000 107.22 61.49 10.71 36.74 45361 5.96 0.33

The number N is lower for WBC NTP and NA attacks when compared to prior
work, i.e. 37881 vs 53863. When we compare the evasion performance of the
attacks, we can observe that the WBC approach has comparable performance
to the Replay and Stale attacks in terms of reduction of the model recall.

6.3 SVM

Table 4 reports the results of the evaluation of the proposed attacks on the SVM
model. The proposed WBC concealment attack evades the SVM model and the
recall drops from 0.63 to 0 in all the considered settings. We can observe how the
NA approach differs by bringing the FPR to 0. The average computational time is
at most 107 ms, which is lower than the sampling rate of the SWaT testbed. Since
the detector is using the water tank levels measured at d timesteps of distance
(π,π′), we constraint the adversarial example to modify only π′ (3 features), this
is consistent with our challenge C1.

When comparing the WBC attacks to prior work generic concealment
attacks, we can observe that the Euclidean distance required by the WBC
attack is lower, as well as the number of perturbed samples by the NTP and NA
approaches. The Hamming distance remains almost the same, after d timestep
of continuous attack (in our case 1 step) all the features in (π,π′) are under the
control of the attacker (6 features).

6.4 PASAD

In this section, we attack PASAD with our WBC approach. The results of the
attack are summarized in Table 5. Also, in this case, the attacks are successful
and the performance of the detector is compromised, as the recall drops close
to 0 in all the three considered attacks. Differently from the previous case, the
recall does not reach exactly 0, this is because there are a few instances in
which the WBC is not reducing enough the distance from the PASAD cluster
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Table 5. WBC results on PASAD trained on SWaT Dataset sensor LIT301 (used in
the paper [3]). The WBC attacks evade PASAD. The WBC requires less than 4ms
to compute. The Euclidean distance is smaller when compared to prior work attacks.
Threshold 3 × 106.

Elapsed (ms) Euclidean D.

Data Acc F1 Prec Rec FPR μ σ μ σ N

Original 0.878 0.557 0.492 0.641 0.090 – – – – –

Prior Work [12]

Replay 0.822 0.118 0.145 0.100 0.080 – – 13.664 48.693 53859

Random R 0.819 0.083 0.106 0.069 0.079 – – 13.341 47.829 53852

Stale 0.899 0.617 0.563 0.681 0.072 – – 17.356 56.065 52013

Our WBC

baseline 0.825 0.039 0.057 0.03 0.067 2.31 1.84 12.92 48.716 40962

NTP 0.818 0.008 0.011 0.006 0.072 3.91 7.95 8.265 94.526 24842

NA 0.870 0.004 0.025 0.002 0.012 2.6 2.44 10.431 48.302 33369

center. Similar to the previous experiment, we can see the difference between
the baseline, NTP, and NA approaches. Again we can observe how the FPR rate
reduces in the case of the NA setting. This time it reaches 0.012 meaning that
there are few false positives.

Looking at the computational time required, the WBC algorithm finds the
adversarial examples in 2.3 ms which is lower that the SWaT sampling time of 1 s.
In this case, optimizations cannot be performed in the baseline setting. PASAD
projects the univariate sensor readings into a subspace and tracks the distance of
the projected time series form the centroid of the normal operations cluster. As
explained with the research challenge C1, we assume we cannot change the whole
time series sliding window but we manipulate just the last observation from the
coming from the physical process. For this reason, the attack evades the detector
by changing one sample at a time. Eventually, if the attack continues, all the
samples in the sliding window are under the control of the attacker.

Finally, if we compare the performance of the white-box attacks w.r.t. black-
box attack from prior work [12], we can observe that also in this case the WBC
attacks are more effective than the black-box attacks in terms of concealment
performance as the WBC recall score is always lower than in the case of the three
attacks black box attacks from prior work. Looking at the Euclidean distance
(Table 5), we can observe that the WBC attacks are on average less expensive
than the black-box attack. Looking instead at the number of modified rows (N)
we can observe that the WBC attacks are always less expensive than prior work.

6.5 SFIG

We then apply our attack method to the SFIG detector (see Table 6). In this set-
ting, the WBC baseline and NTP coincide, because the invariant-based detector
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Table 6. Attack against the SFIG detector on the SWaT dataset. The WBC baseline
and NTP coincide because in invariant-based detectors alarms can be triggered only if
rules are contradicted.

Elapsed (ms) Euclidean D. Ham. D.

Data Acc F1 Prec Rec FPR μ σ μ σ N μ σ

Original 0.958 0.793 0.950 0.681 0.005 – - – – – – –

Prior Work [12]

Replay 0.876 0.000 0.004 0.000 0.005 – – 69.60 210.70 53863 28.4 5.3

Random R 0.893 0.240 0.797 0.141 0.005 – – 69.58 210.53 53863 28.4 5.3

Stale 0.881 0.080 0.544 0.043 0.005 – – 66.05 211.53 53862 27.4 8.4

Our WBC

base./NTP 0.876 0.003 0.040 0.002 0.005 256.2 34.5 0.136 0.459 36704 2.8 0.5

NA 0.880 (0)† 0.0 0.0 0.0 354.3 264.6 0.141 0.465 38643 2.8 0.6

triggers only when rules are contradicted (i.e., there is no loss to minimize). In
this experiment, we consider attacks that deal with the 51 features of the SWaT
dataset, as the detector considers them all together.

Also in this setting, the detector was evaded by the attacks reducing the
performance of the detector from 0.68 to 0 in both cases. Also here we can
appreciate the difference induced in the false positive rate in the two attack
settings, the NA setting leaves no false positives.

In the WBC baseline/NTP, we notice that the recall is not 0.000, this is
because we noticed that there is an artifact in the detection rules which causes
a contradictory set of rules. This means that applying our attack to fix the
data to turn off the alarms, triggers another rule in contradiction. This makes
it impossible to turn off the alarm in a row of data.

Looking at the computational time required by the attacks in this case, we
are in the order of 200/300 ms which is lower than the SWaT sampling time.
Regarding the Euclidean distance, from Table 6 we can observe that the WBC
attacks are less expensive than the attacks from the black box attacks from prior
work, the proposed WBC attacks are always 2 orders of magnitude closer to the
original values, meaning that features need to be slightly modified to achieve the
goal. Also, the number of modified rows N (as in the previous experiments) is
smaller. In this multivariate setting, we can also measure the number of features
that were modified by the attack (i.e., the Hamming distance). As we can observe
in Table 6, out of the 51 features in the SWaT dataset, WBC attacks modify on
average 2.8 features (maximum 7 features out of 51), while prior work attacks
modify on average ∼30 features (maximum 37 features out of 51).

Finally, if we compare the performance of the WBC w.r.t. attacks from prior
work [12], we can observe that on one hand, the WBC NTP have a similar
performance to Replay and Stale attacks from prior work, but on the other
hand, as we pointed out before the WBC NTP is overall cheaper in terms of
features that are modified by the attack.
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Table 7. Summary of findings on our white-box concealment attacks. ‘# Manipulated’
refers to the number of features that needed to be manipulated by the attacker.

Method Attack works # Manipulated Computational Cost ≤ 1 s

AR ✓ 1/1 249 ms

LTI ✓ 3/25 120 ms

SVM ✓ 3/6 107 ms

PASAD ✓ 1/1 4 ms

SFIG ✓ 3/51 360 ms

7 Discussion and Conclusion

In this section, we discuss the answers to our research questions. In Table 7 we
summarize our findings. With respect to question R1, we tested three variations
of the proposed WBC attacks, over five different anomaly detection systems.
To do so the attacker has to deal with challenge C1 (i.e., manipulate only the
last sensor value) and with challenge C2 (i.e., transform to differentiable detec-
tors which do not use a loss function). As a result, we found that the evaluated
detectors are vulnerable to white-box concealment attacks, i.e., for all the tested
detectors, the recall score drops to 0 or very close to it. This result demonstrates
that the proposed attack methodology can affect a wide range of anomaly detec-
tors for cyber-physical systems, affecting their detection performance with often
little perturbation of the sensor data (in terms of Hamming and Euclidean dis-
tance). Our analysis reveals that only a low number of resources need to be
under the control of an attacker to subvert the classification outcome of the tar-
get anomaly detector. For example, for the LTI and the SFIG, our results show
that is enough to control ∼3 features of the multivariate detector to conceal
attacks.

With respect to research question R2, we measured the time to compute the
adversarial examples (worst case ∼350 ms), and we found that runtime manip-
ulations are possible, as it is possible to compute manipulations faster than the
system’s sampling rate of the SWaT system (1 sample per second). We note that
temporal constraints for adversarial examples are not generally investigated by
related adversarial machine learning literature, as in other domains adversarial
examples can be pre-computed (for example in the image classification domain)
and do not need to be adapted based on the context.

Concerning research question R3, we compared the proposed attacks with
black-box attacks from prior work [12], in particular in terms of concealment
performance and Euclidean distance. We found that our proposed WBC attacks
are more effective (e.g., F1 score of the PASAD model is always lower in the
WBC attack 0.039 vs 0.083 from prior work). Moreover, in general, our attacks
require less manipulation than prior work attacks, (e.g., the Euclidean Distance
in the SFIG case is 0.136 vs 66.05 from prior work, same the holds for the
Hamming distance WBC 2.81 vs 27.41 from prior work).
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Our results demonstrate that it is possible to evade a wide range of detectors
while reducing the number of samples that need to be manipulated (compared to
prior black-box concealment attacks). Those findings highlight the need for further
research and constructive discussion about guarantees for CPS anomaly detec-
tors against adversarial manipulation. As such we see our contribution toward the
robustness and reliability of CPS detectors against adversarial examples.
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